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Beam-beam interactions

● One of major sources which cause emittance growth or beam loss.
● Head-on at IPs and long-range at parasitic crossings.
● Expected to deteriorate beam quality in LHC, because of large beam 

intensity (1.2E11) and many bunches (30 parasitic crossings per IP).
● Need ways to reduce the effects:

● Electron lens for head-on beam-beam compensation
● Current carrying wire for long-range beam-beam compensation



Beam-beam force



Current carrying wire for long-range collision

● For a large separation distance at parasitic crossings, the 
strength of long-range interaction is inversely proportional to 
the distance.

● Its effect on a test beam can be compensated by current 
carrying wires which create just the same field. 

● The advantage of such an approach consists of the simplicity 
of the method and the possibility to deal with all multipole 
orders at once.

● Beam-beam kick of round beam

● Wire kick



Low energy electron lens for head-on collision

● Low energy electron beam which is matched to a profile of 
high energy colliding beam acts as a defocusing or focusing 
lens which compensates effect of the colliding beam.

● Beam-beam kick of round beam

● Elens kick of Gaussian electron beam



Motivation

● In LHC, both head-on and long-range interactions are an In LHC, both head-on and long-range interactions are an 
issue due to large beam intensity and many bunches.issue due to large beam intensity and many bunches.

● Wire compensation will be tested in RHIC as a proof of Wire compensation will be tested in RHIC as a proof of 
principle.principle.

● RHIC is also interested in head-on compensation with an RHIC is also interested in head-on compensation with an 
electron lens to mitigate emittance growth.electron lens to mitigate emittance growth.

● Wire compensator: installed in 2006.Wire compensator: installed in 2006.
● Electron lens: will be installed by end of 2011.Electron lens: will be installed by end of 2011.



Beam-Beam Simulation Code (BBSIMC)

● 6D weak-strong tacking code6D weak-strong tacking code
● Linear transfer matrices btwn nonlinear elements + Linear transfer matrices btwn nonlinear elements + 

nonlinear kicks at the nonlinear elements (thin lens nonlinear kicks at the nonlinear elements (thin lens 
approximation: sextupoles, mulitpoles, etc.)approximation: sextupoles, mulitpoles, etc.)

● Beam-beam force: (1)  Gaussian beam profile and (2) 
Poisson solver with FFT.

● Multiple-slice model for finite bunch length effects
● Lorentz boost to handle crossing angle collisions
● Modules: wire and electron lens compensation, BTF, and 

diffusion
● Fully parallelized with MPI.



Multiple slice model for head-on

● The strong bunch is divided into slices in 
a longitudinal direction to consider the 
finite bunch length effect of the beam-
beam interaction. 

● In the simulations, we applied 11 slices in 
the main IPs where the beta function is 
comparable with the bunch length. 

● Each slice in a beam interacts with 
particles in the other beam in turn at 
the collision points.



Beam-Beam Force

● Bassetti-Erskine formula for elliptic Gaussian beam 
profile

, where n* is number of particle per bunch, r0 is classical radius of 
particle, γ is Lorentz factor, and w is complex error function.



Beam-Beam Force

● Poisson solver with FFT for arbitrary beam profile
● Green function solution of Poisson equation

Using convolution theorem and inverse Fourier transform, one can get



Beam-beam and beam-wire interactions at 
RHIC



RHIC (Relativistic Heavy Ion Collider)

● RHIC is used as a test bed for a 
wire compensator.

● Head-on collisions at IP6/8.

● In this study, simulate only Blue 
beam.



RHIC Parameters

unit Gold beam Deuteron beam

Energy Gev/n 100 107

Bunch intensity 1E9 1 134

Emittance (95%) mm-mrad 18 18

Beta* at IP6 m 1 0.9

Beta(x,y) at wire location m (1100,390) (1200,400)

Beam-beam parameter 1E-3 1.3 1.5

Nominal tune (0.220, 0.231) (0.235, 0.225)

Chromaticity +2 +2

● Gold beam: gold(Blue)+gold(Yellow)
● Deuteron Beam: deuteron(Blue)+gold(Yellow)



Wire compensator in RHIC
● Two wires are installed (one for each beam).
● Phase advance betwn DX magnet and wire location is 5.7 degree.
● To compensate a single long-range, the current strength (IL) is 

required by (IL) = Nb * q * c, (Nb=bunch intensity, q=charge, c=speed 
of light).

● (IL) = 3.8 A-m (for Gold beam), 6.5 A-m (for Deuteron beam).
● Maximum wire strength is 125 A-m (Max. current is 50A).

● To see the effect of wire, 
max. current is applied in 
the experiment and 
simulation.



Tune: wire position scan (RHIC)
● The full lines are the curves 

calculated using the following 
expression:

● Measurements and simulations 
also agree.

Simulation

Measurement

● Data sets are obtained 
at gold beam at store 
energy. (Abreu, Fisher)



Gold beam: tune footprint (RHIC)

● Initial amplitude particles of 0-
4 sigma.

● Resonance line: blue(9th order), 
cyan(12th order).

● Wire makes the tune spread 
wider.

● Resonance line below 12th order 
does not span the footprint.

9th

12th

No WireWith Wire



Gold beam: Freq. Diffusion map (RHIC)
● Freq. Diffusion: tune change btwn first 

and second 1024 turns
– DQ = log[sqrt(dQx^2 + dQy^2)]

● Red color corresponds larger diffusion.
● Wire increases the detuning of betatron 

tune.
● Wire makes the particle motions more 

chaotic at amplitude beyond 3 sigma. 

No Wire

Wire:
50A 

7sigma



Deuteron beam: tune footprint (RHIC)

● Initial amplitude particles of 0-
4 sigma.

● Resonance line: blue(9th order), 
cyan(12th order).

● Final tunes of the deuteron 
beam due to the wire is closer 
to the diagonal

● Deuteron beam is free from the 
9th and 12th order resonances.

9th

12th

No WireWith Wire



Deuteron beam: Freq. Diffusion map (RHIC)
● No wire: mostly stable motion and only a 

small region with appreciable diffusion 
(only 12th resonance spanning)

● Wire changes the diffusion map 
significantly.

● Regions with large diffusion are 
observed even at 1 sigma amplitude even 
though no resonances below 12th order 
are spanned by the beam distribution.

No Wire

Wire:
50A 

7sigma



Dynamic aperture (RHIC)

● Dynamic aperture is defined as the 
largest radial amplitude of particles 
that survive up to a certain time interval 
(1E6 turns).

● Wire distorts the boundaries near the 
vertical plane since the wire is moved in 
the vertical plane.

● With the wire powered, the DA in the 
two cases is nearly the same.

● Relative change of DA in Deuteron is 
bigger than Gold.

Gold beam

Deuteron beam



DA: Tune scan (RHIC gold-gold injection) 
● At all wire separations, the largest 

dynamic apertures are distributed along 
the diagonal line Qx-Qy=0.02.

● The zone along Qx-Qy=0.03 has the 
smallest dynamic apertures.

● This scan indicates that the nominal 
tune is close to optimal. 

● A sharper drop in dynamic aperture is 
observed near the 5th order resonance.

8 sigma

4 sigma

6 sigma



DA: Tune scan (RHIC gold-gold storage)
● At all wire separations, the largest dynamic 

apertures are distributed nearly along the 
diagonal between  Qx=0.21 and Qx=0.24. 

● The zone along Qx=0.25 has the small dynamic 
apertures.

● Nominal tune is in the region of large DA.

6 sigma

8 sigma

7 sigma



DA: Tune scan (RHIC deuteron-gold storage)

6 sigma

8 sigma ● Reduction of the DA is dominant near 4th 
resonance.

● A notable variation is seen near a circular 
band, i.e., Qx^2+Qy^2=0.21^2, when the 
beam-wire separation is small.

● Nominal tune is in the region of large DA.

7 sigma



BTF (beam transfer function) in RHIC

No Wire

Wire

● <x>: beam response to a small external 
transverse excitation at a given frequency.

● Transverse coupling is observed: One peak is 
close to 0.230 which is the horizontal tune, 
and the other is 0.225 which is the vertical 
tune.

● The shift of a peak location of the amplitude 
increases as the wire separation decreases.

● Width of the amplitude response widens.
● The shift is equivalent to the tune shift of 

zero amplitude particles.



Particle diffusion (RHIC)

● Simulation: 
● Measurement: obtained by fitting the time-

dependent loss rate after moving a collimator 
into and out from the beam.

● Dependence of diffusion coefficients on the 
initial action is exponential at small amplitudes 
and power law-like at larger amplitudes.

● Relative increase of diffusion coefficients at 
below 3 sigma amplitude for the deuteron 
beam is higher than that for the gold beam.

● Enhanced diffusion at near 3 sigma  amplitude 
for the deuteron beam leads to significant 
increase of particle loss under the simulation 
conditions.

Gold beam

Deuteron beam



Loss rate due to beam-wire interaction (2008)

Loss rate

Wire separation



Particle loss rate (RHIC)

● Onset of beam losses is observed at 8  and 
9 sigma for gold and deuteron beams.

● Separation at which there is a sharp rise in 
the loss rates agree with measurement.

● At fixed separation, loss of deuteron beam 
is higher than gold beam.

● Freq. diffusion with the wire shows greater 
diffusion in the deuteron case.

● Action diffusion is also larger in the 
deuteron beam.

● Both frequency and action diffusions seem 
to be better correlated with loss rates than 
the traditional short term indicators like 
footprints and dynamic aperture.

Gold beam

Deuteron beam



Long-range compensation (May 27, 2009)

● 100Gev proton-proton beam
● Bunch intensity: 1.7E11 p/bunch
● Yellow: tune(0.695,0.692), chrom(-1.5,1.0), ε(49,19)
● Blue: tune(0.691,0.688), chrom(2.3,-1.4), ε(24,-)

● Single long-range interaction near DX magnet.
● Wire current: 5A

R. Calaga, W. Fischer, G. Robert-Demoliaze





Summary (beam-wire interaction in RHIC)
● Betatron tune change due to the wire is well tracked by the simulation.
● Wire causes a significant increase in tune spread and diffusion for both 

gold and deuteron beams.
● Stability boundary near the vertical axis is linearly proportional to the 

beam-wire separation.
● Tune scan of DA identifies the betatron tune where DA is maximized 

for both gold and deuteron beams.
● BTF simulation and measurement identify betatron tune and transverse 

coupling.
● Action diffusion for the deuteron beam is larger than for the gold beam.
● Threshold separation at which there is a sharp rise in the loss rates 

agree to better than 1 sigma.
● Tune and action diffusions are closely related to particle loss rate.



Beam-beam compensation with current 
carrying wire at LHC



MODEL: Wire compensation in LHC

● A wire on each side of IP (total 4)
● Wire strength: (IL) = 83A-m
● Wire location: 105 m for IP
● At wire location: 

     (betax,betay)=(1783,1792)

wire Wire separation (sigma)

horizontal vertical

IP1_left 0 -8.56

IP1_right 0 +9.56

IP5_left -9.33 0

IP5_right +8.33 0

Koutchouk and Dorda

● Nominal LHC: 2808 bunches  → 30 parasitic crossings per IP



MODEL: Wire compensation in LHC

● 7 Tev proton-proton beam
● 2 head-on (IP1 & 5), beta* = 0.55m
● Beam intensity: 1.15E11 per bunch
● Crossing angle: 285 micro-rad
● Working point: (0.31,0.32)
● Chromaticity: (+2,+2)
● Emittance: 22.5 mm-mrad



Footprint (LHC)

● beam-beam parameter is 0.004.
● long-range interaction affects 

higher amplitude particles.
● Long-range interaction increases 

the tune spread of the high 
amplitude particles.

● footprint can be compressed to 
nearly the same spread as with 
the long-range interactions 
excluded.

No Wire
With Wire



Wire position scan: DA / beam loss (LHC)

● wire-beam separation distance is 
one of major wire parameters.

● separation is relative to average 
beam separation.

● angle-averaged dynamic aperture 
for off-momentum particles with dp 
= 3 sigma. 

● dynamic aperture decrease linearly 
as the separation decreases.

● minimum particle loss between 0.9 
and 1.0 separations.

● Proposed separtion is close to 
optimal one.

(IL)=83A-m

(IL)=83A-m



Freq. diffusion vs. wire separation (LHC)

● Small amplitude particles 
are unaffected by the 
beam-beam compensation. 

● Freq. diffusion is improved 
at a certain separation 
( 0.9 and 1.0 separations).

● suppress the tune change 
at large amplitude beyond 
4 sigma.

0.8*d 0.9*d

1.0*d 1.1*d



DA vs. current (LHC)

● Current is varied from 40 Am to 
150 Am ( 0.5 - 2 times 82.8 Am).

● DA stays roughly constant up to 
100 Am, and falls down to 4.5 
sigma. 

● Beam dynamics are less sensitive 
to wire current than wire-beam 
separation.

DA

separation 0.8-1.2 4 - 7 sigma

current 0.5-2.0 4.5-5.5 sigma



Summary (wire compensation in LHC)
● The results show that the particle loss is minimized at the wire 

separation between 0.9 and 1.0 of the reference separation. 
●

● The separation corresponds to the one where the tune change of 
large amplitude particles is reduced. 

●

● The dynamic aperture results show that the beam dynamics are more 
sensitive to the wire-beam separation than the wire current.



Beam-beam compensation with electron lens 
at RHIC



MODEL: Electron lens simulation at RHIC

● 250 Gev p-p beam
● 2 head-on (IP6 & 8), beta* = 0.5m
● Beam intensity: 2E11 per bunch
● Working point: (0.695,0.685)
● 1 e-lens at IP10 , beta = 10m
● NL: sextupoles/IR multipoles

● 1.7E11 bunch intensity is achieved at Run-08.1.7E11 bunch intensity is achieved at Run-08.
● For > 2E11 intensity, large beam loss is expected (2/3, 7/10 For > 2E11 intensity, large beam loss is expected (2/3, 7/10 

resonance).resonance).
● Elens installation by end of 2011.Elens installation by end of 2011.

elens



Electron Lens Requirement

● For full tune-spread compression
– Electron beam profile should match proton profile at IP 

( Gaussian)
– Electron beam intensity should be Ne = N_ip * Np ; N_ip 

=2, Np=2E11
– Full tune-spread compression does not help to reduce 

particle loss (BBSIMC, LIFETRAC, SIXTRACK)
● For reduction of particle loss
– Electron beam profile should match proton profile for 

tune compression, but other profiles may be more 
suitable for reducing particle loss.

– Electron beam intensity may be different from N_ip * 
Np



Electron beam profiles

1 sigma Gaussian
- exp(-0.5(r/sigma)**2)
- match to proton beam size

2 sigma Gaussian
-  exp(-0.5(r/2sigma)**2)

Smooth Edge Flattop(SEFT)
-  1/(1+(r/4sigma)**8)



Gaussian Electron Lens ( 1 sigma)

● Footprint ● Dynamic Aperture

● 1x bbc = beam-beam compensation with Ne = Nip * Np = 2*2E11

DA is increased at 1/8x bbc1x bbc fully compensates footprint.
Footprint folding is observed.



Gaussian Electron Lens ( 1 sigma)

NO elens

1/8x bbc 1x bbc

● Freq. diffusion: tune change btwn first 
and second 1024 turns

– DQ = log[sqrt(dQx^2 + dQy^2)]
● 1x bbc: decrease tune change at small 

amp. but increase at large amp.
● 1/8x bbc: decrease tune change at both 

small and large amp.



Gaussian Electron Lens (1 sigma)

● Small Ne reduces beam loss: Ne < 0.5 Nip * Np
– (loss with 1x bbc)/(loss with NO bbc) ~ 600%
– (loss with 1/8x bbc)/(loss with NO bbc) ~ 30%

NO BBC  

1x BBC  

1/8x BBC

● Particle loss



Comparison of electron beam distributions

Profile Intensity
(N_ip*Np)

Dynamic aperture
(sigma)

Particle loss
(Relative to NO elens)

1 sigma 
Gaussian

1/2 5.10 115%

1/4 5.44 63%

1/8 5.63 30%

2 sigma 
Gaussian

2 5.05 10%

1 5.40 8%

1/2 5.63 6%

SEFT

2 4.77 22%

1 5.47 6%

1/2 5.57 6%
● Below threshold current with 2 sigma Gaussian and SEFT profiles, 

particle loss is relatively insensitive to electron lens current 
variations.



Summary (elens compensation in RHIC)
● Full tune-spread compression causes footprint folding and increases 

particle loss. Partial tune-spread compression without inducing 
footprint folding may reduce particle loss.

● Tune diffusion is closely related to particle loss.

● There is a threshold electron beam intensity below which beam life 
time is increased

● Particle losses for 2 sigma Gaussian and SEFT profiles are relatively 
insensitive to intensities below threshold.

● Wider electron beam profile than proton at elens location is found to 
increase beam life time. Validation with better statistics in progress.

Profile Threshold (N_ip*Np)

1 sigma G 0.5 

2 sigma G 2

SEFT 4



Summary

● Simulations of wire-beam interaction in RHIC agree well with 
experiments. 

● Measurements with wire compensation in RHIC are in progress.

● Wire compensaton in LHC reduces beam loss and the proposed wire 
separation distance is close to optimal.

● Electron lens is benefical to reduction of beam loss in RHIC. Wider 
electron lens profiles are better.



Thank you



Electromagnetic lens (current carrying wire)

● For a finite length of a wire embedded in the middle of a drift 
and tilted in pitch and yaw angles, the transfer map of a wire 
is

, where T represents the tilt of the coordinate system by horizontal and 
vertical angles  to orient the coordinate system parallel to the wire, D is the 
drift map with a length L/2, and  M is the wire kick integrated over a drift 
length



Gaussian Electron Lens ( 2 sigma)

● Footprint ● Dynamic Aperture

DA is increased at 1/2x bbc

● Peak of 4x bbc electron beam profile is matched to that 
of 1x bbc at 1 sigma Gaussian.



Gaussian Electron Lens ( 2 sigma)

NO elens

1/2x bbc 4x bbc

● Tune Diffusion

● 4x bbc: decrease tune change at small 
amp. but increase at large amp.

● 1/2x bbc: decrease tune change at both 
small and large amp.



Gaussian Electron Lens ( 2 sigma)

NO BBC  

1/2x BBC
1x BBC
2x BBC

● Small Ne reduces beam loss: 
– (loss with 1/2x bbc)/(loss with NO bbc) ~ 10%

● Particle loss

4x BBC  



SEFT Electron Lens ( 4 sigma)

● Footprint ● Dynamic Aperture

● Shape of footprint with compensation is almost the same as without 
compensation.

● Dynamic aperture is almost the same up to 2x bbc.



SEFT Electron Lens ( 4 sigma)

NO elens

1/2x bbc 4x bbc

● Tune Diffusion

● 4x bbc: decrease tune change at small 
amp. but increase at large amp.

● 1/2x bbc: decrease tune change at both 
small and large amp.



SEFT Electron Lens ( 4 sigma)

NO BBC  

1/2x BBC
1x BBC

● Small Ne reduces beam loss: 
– (loss of 1/2x bbc)/(loss of NO bbc) ~ 10%

● Particle loss

2x BBC
4x BBC   
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